

IEC QUALITY ASSESSMENT SYSTEM (IECQ)

covering Electronic Components,

Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Conformity

Approved Component

IECQ Certificate No.: IECQ-C ULTW 16.0001

CB Certificate No.: 20002429AQP

Schedule Number: IECQ-C ULTW 16.0001-S

Rev No.: 1 Revision Date: 2016-01-04

Page 1 of 5

Approval Scope

Map Range and Thickness Code --- 50~100V

Dielectrie	e & Series	X7R – Soft termination						
	EIA Size	0603	0805	1206	1210	1808	1812	
Cap. (pF)	Rated Voltage							
	Cap. Khick.		50~100V					
	rule code code							
100	101							
150	151							
180	181							
220	221	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF		
270	271	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
330	331	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
390	391	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
470	471	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
560	561	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
680	681	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
820	821	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
1000	102	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
1200	122	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
1500	152	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
1800	182	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
2200	222	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
2700	272	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
3300	332	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
3900	392	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
4700	472	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
5600	562	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
6800	682	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
8200	822	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
10000	103	SXB	XBMJC	XBMJCIDEP	MJCIDEPFG	CIDEPF	CIDEPFGH	
12000	123	В	XBMJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
15000	153	В	XBMJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
18000	183	В	XBMJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
22000	223	В	XBMJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
27000	273	В	MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	

This schedule is only valid in conjunction with the referenced Certificate of Approval This approval and any schedule(s) may only be reproduced in full. This approval is not transferable and remains the property of the issuing body. The Status and authenticity of this approval and any schedule(s) may be verified by visiting the Official IECQ Website. www.iecq.org

DQS Taiwan Inc., 8th Fl., 23, Yuan Huan West Road, Feng Yuan Dist., Taichung City Taiwan

IEC QUALITY ASSESSMENT SYSTEM (IECQ)

covering Electronic Components,

Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Conformity

Approved Component

IECQ Certificate No.: IECQ-C ULTW 16.0001

CB Certificate No.: 20002429AQP

Schedule Number: IECQ-C ULTW 16.0001-S

Rev No.: 1 Revision Date: 2016-01-04 Page 2 of 5

Dielectri	c & Series	X7R – Soft termination						
	EIA Size	0603	0805	1206	1210	1808	1812	
Cap. (pF)	Rated Voltage Cap. Khick. rule code code		50~100V					
33000	333	В	MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
39000	393		MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
47000	473		MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
56000	563		MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
68000	683		MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
82000	823		MJC	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
100000	104		С	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
120000	124		С	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
150000	154		С	XBMJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
180000	184		С	MJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
220000	224			MJCIDEP	MJCIDEPFG	EPF	CIDEPFGH	
270000	274			CIDEP	MJCIDEPFG		CIDEPFGH	
330000	334			EP	MJCIDEPFG		CIDEPFGH	
390000	394			EP	CIDEPFG		CIDEPFGH	
470000	474			EP	CIDEPFG		CIDEPFGH	
560000	564			Р	EPFG		CIDEPFGH	
680000	684			Р	EPFG		CIDEPFGH	
820000	824				PFG		CIDEPFGH	
1000000	105				PFG		CIDEPFGH	
120000	125				FG		CIDEPFGH	
150000	155						CIDEPFGH	
1800000	185						EPFGH	

Table 1 Sample Part Number

No.	Size	Cap. Range	Thickness Code & Range		
1	0603	220pF~33nF	S, X, B	0.70~0.95mm	
2	0805	220pF~180nF	X, B, M, J, C	0.70~1.35mm	
3	1206	220pF~680nF	X, B, M, J, C, I, D, E, P	0.70~1.90mm	
4	1210	220pF~1.2µF	M, J, C, I, D, E, P, F, G	0.85~2.80mm	
5	1808	220pF~220nF	C, I, D, E, P, F	1.15~2.20mm	
6	1812	270pF~1.8µF	C, I, D, E, P, F, G, H	1.15~3.10mm	

This schedule is only valid in conjunction with the referenced Certificate of Approval This approval and any schedule(s) may only be reproduced in full. This approval is not transferable and remains the property of the issuing body. The Status and authenticity of this approval and any schedule(s) may be verified by visiting the Official IECQ Website. www.iecq.org

DQS Taiwan Inc., 8th Fl., 23, Yuan Huan West Road, Feng Yuan Dist., Taichung City Taiwan

IEC QUALITY ASSESSMENT SYSTEM (IECQ)

covering Electronic Components,

Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Conformity

Approved Component

IECQ Certificate No.: IECQ-C ULTW 16.0001

CB Certificate No.: 20002429AQP

Schedule Number: IECQ-C ULTW 16.0001-S

Rev No.: 1 Revision Date: 2016-01-04 Page 3 of 5

P/N Explanation:

<u>MT</u>	<u>18</u>	X	<u>221</u>	<u>J</u>	<u>500</u>	X	<u>S</u>	E
<u>Remark 1</u>	<u>Remark 2</u>	<u>Remark 3</u>	<u>Remark 4</u>	<u>Remark 5</u>	<u>Remark 6</u>	<u>Remark 7</u>	<u>Remark 8</u>	<u>Remark 9</u>

Remark 1	PDC family
Code	Description
MT	AEC-Q200 Automotive safe concern

Remark 2	EIA size				
Code	Description	Code	Description		
18	0603 (1608)	32	1210 (3225)		
21	0805 (2012)	42	1808 (4520)		
31	1206 (3216)	43	1812 (4532)		

Remark 3	Dielectric Material Characteristics		
Code	Description		
X	X7R		

Remark 4	Capacitance Rule Code				
Code	Description	Code	Description	Code	Description
221	221=22x10 ¹ =220pF	184	184=18x10 ⁴ =180nF	125	125=12x10 ⁵ =1.2μF
271	271=27x10 ¹ =270pF	224	224=22x10 ⁴ =220nF	185	185=18x10 ⁵ =1.8µF
333	$333=33 \times 10^3=33 \text{nF}$	684	684=68x10 ⁴ =680nF		

Remark 5	Tolerance				
Code	Description	Code	Description	Code	Description
J	±5%	Ι	-10%~0%	Ν	-5%~+10%
K	±10%	L	0%~+10%	Μ	±20%

Remark 6	Rated voltage					
Code	Description	Code	Description			
500	50VDC	101	100VDC			

Remark 7	Packaging Type					
Code	Description	Code	Description			
Х	Bulk	В	Tray package			
Р	Tape and 7" Reel, Embossed Tape	Т	Tape and 7" Reel, Paper Tape			
K	Tape and 10" Reel, Embossed Tape	Q	Tape and 10" Reel, Paper Tape			
L	Tape and 13" Reel, Embossed Tape	G	Tape and 13" Reel, Paper Tape			

This schedule is only valid in conjunction with the referenced Certificate of Approval This approval and any schedule(s) may only be reproduced in full. This approval is not transferable and remains the property of the issuing body. The Status and authenticity of this approval and any schedule(s) may be verified by visiting the Official IECQ Website. www.iecq.org

DQS Taiwan Inc.,

8th Fl., 23, Yuan Huan West Road, Feng Yuan Dist., Taichung City Taiwan

IEC QUALITY ASSESSMENT SYSTEM (IECQ) covering Electronic Components,

Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Conformity

Approved Component

IECQ Certificate No.: IECQ-C ULTW 16.0001

CB Certificate No.: 20002429AQP

Schedule Number: IECQ-C ULTW 16.0001-S

Rev No.: 1 Revision Date: 2016-01-04 Page 4 of 5

Remark 8	Thickness Description					
Code	Description	Code	Description	Code	Description	
S	0.80±0.07 mm	С	1.25±0.10 mm	F	2.00±0.20 mm	
Х	0.80±0.10 mm	Ι	1.25±0.20 mm	G	2.50±0.30 mm	
В	0.8 +0.15/-0.10mm	D	1.40±0.15 mm	Н	2.80±0.30 mm	
Μ	0.95±0.10 mm	Е	1.60±0.20 mm			
J	1.15±0.15 mm	Р	1.60 +0.3/-0.10mm			

Remark 9	Series - Special Control Code
Code	Description
Е	Soft Termination [Anti-Bend termination base with Ni barrier (100% Tin plating)]

Outline Drawing and Dimension

		Dimension			
Outline Drawing	Size	\mathbf{L}	W	Т	MB
		(mm)	(mm)	(mm)	(mm)
L de la constante de la consta	0603	1.60 ± 0.20	0.80±0.20	0.95 max.	0.20 min.
	0805	2.10±0.20	1.25 ± 0.20	1.35 max.	0.30 min.
Т	1206	3.30±0.30	1.60 +0.30/-0.10	1.90 max.	0.30 min.
*	1210	3.30±0.40	2.50±0.30	2.80 max.	0.30 min.
W	1808	4.60±0.50	2.00±0.25	2.20 max.	0.30 min.
	1812	4.60±0.50	3.20±0.40	3.10 max.	0.30 min.

Electrical Characteristics

<u>Dielectric</u>	X7R		
Size	0603, 0805, 1206, 1210, 1808, 1812		
Capacitance range	220pF to 1.8µF		
Capacitance tolerance**	J, K, I, L, N, M		
Dissipation Factor	≤2.5%		
Rated voltage (WVDC)	50V, 100V		
Insulation resistance at Ur	≥10GΩ or RxC≥500ΩxF whichever is smaller		
Operating temperature	-55 to +125°C		
Temperature Characteristic of Capacitance	±15%		

** Preconditioning for MLCC : Perform a heat treatment at 150±10°C for 1hour, then leave in ambient condition for 24±4hours before measurement.

This schedule is only valid in conjunction with the referenced Certificate of Approval This approval and any schedule(s) may only be reproduced in full. This approval is not transferable and remains the property of the issuing body. The Status and authenticity of this approval and any schedule(s) may be verified by visiting the Official IECQ Website. www.iecq.org

DQS Taiwan Inc., 8th Fl., 23, Yuan Huan West Road, Feng Yuan Dist., Taichung City Taiwan

IEC QUALITY ASSESSMENT SYSTEM (IECQ) covering Electronic Components, Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Conformity

Approved Component

IECQ Certificate No.: IECQ-C ULTW 16.0001

CB Certificate No.: 20002429AQP

Schedule Number: IECQ-C ULTW 16.0001-S

Rev No.: 1 Revision Date: 2016-01-04

Page 5 of 5

Standards and Specifications

AEC-Q200 Rev.D, Stress Test Qualification for Passive Components
MIL-STD-105E, Sampling Procedure and Tables for Inspection by Attributes
MIL-STD-202G, Test Method Standard, Electronic and Electrical Component Part
MIL-STD-883, Test Method Standard, Microcircuits
EIA-469, Standard Test Method for Destructive Physical Analysis (Dpa) of Ceramic Monolithic CAPA
JESD22-A104E, Temperature Cycling
JESD22-B100B, Physical Dimension
J-STD-020D, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
J-STD-002, Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires

IEC 60384-22, Sectional specification: Fixed surface mount multilayer capacitors of ceramic dielectric, Class 2

EIA-198, Ceramic Dielectric Capacitors Classes I, II, III and IV

This schedule is only valid in conjunction with the referenced Certificate of Approval This approval and any schedule(s) may only be reproduced in full. This approval is not transferable and remains the property of the issuing body. The Status and authenticity of this approval and any schedule(s) may be verified by visiting the Official IECQ Website. www.iecq.org

DQS Taiwan Inc., 8th Fl., 23, Yuan Huan West Road, Feng Yuan Dist., Taichung City Taiwan

