

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval

Independent Testing Laboratory IECQ Certificate No.: IECQ-L JQAJP 13.0002

CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 1 of 8

TESTD PARTS

Fixed capacitor, Fixed resistor, Potentiometer, Varistor, Thermistor, Connector, Relay, Switch, Printed circuit board, Semiconductor Devices, Semiconductor Integrated Circuit and Optical Component

ENVIRONMENTAL TEST

IEC 60068-2-1:2007	Cold
IEC 60068-2-2:2007	Dry heat
IEC 60068-2-11:1981	Salt mist
IEC 60068-2-14:2009	Change of temperature
IEC 60068-2-20:2008	Test methods for solderability and resistance
	to soldering heat of devices with leads
IEC 60068-2-30:2005	Damp heat, cyclic (12+12-hour cycle)
IEC 60068-2-38:2009	Composite temperature/humidity cyclic test
JIS C 60068-2-42:1993	Sulphur dioxide test for contacts and connections
JIS C 60068-2-43:1993	Hydrogen sulphide test for contacts and connections
IEC 60068-2-45:1980	Immersion in cleaning solvents
JIS C 60068-2-52:2000	Salt mist, cyclic (sodium chloride solution)
IEC 60068-2-54:2006	Soldering. Solderability testing by
	the wetting balance method
JIS C 60068-2-58:2016	Test methods for solderability, resistance to dissolution of
	metallization and to soldering heat of SMD
IEC 60068-2-60:2015	Flowing mixed gas corrosion test
IEC 60068-2-66:1994	Damp heat, steady state (unsaturated pressurized vapour)
IEC 60068-2-78:2012	Damp heat, steady state
MIL STD 202H	Test method standard electronic and electrical component parts
MIL STD 883K	Test method standard microcircuts

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval

Independent Testing Laboratory IECQ Certificate No.: IECQ-L JQAJP 13.0002

CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 2 of 8

MECHANICAL TEST

IEC 60068-2-6:2007 Vibration (sinusoidal)

IEC 60068-2-21:2006 Robustness of terminations and

integral mounting devices

IEC 60068-2-27:2008 Shock

IEC 60068-2-31:2008 Rough handling shocks, primarily for

equipment-type specimens

IEC 60068-2-53:2010 Tests and Guidance: Combined climatic (temperature/humidity)

and dynamic (vibration/shock) tests

STRESS TEST

JEITA ED-4701/302:2013

Environmental and endurance test methods for semiconductor devices (Stress test I-2)

Test method 304A Human body model electrostatic discharge (HBM/ESD)
Test method 305C Charged device model electrostatic discharge (CDM/ESD)

Test method 306B Latch-up

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002
CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 3 of 8

LED OPTICAL CHARACTERISTIC TEST

JIS C 7801:2009 Measuring methods of lamps for general lighting
JIS C 8152-1:2012 Photometry of white light emitting diode for
general lighting — Part 1: LED packages

JIS C 8152-2:2012 Photometry of white light emitting diode for general lighting

Part 2: LED modules and LED light engines

JIS C 8105-5:2011 Luminaires — Part 5: Gonio-photometric method

OTHER TEST

Failure Analysis, Construction Analysis, Elemental Analysis, Thermal Analysis and Internal Gas Analysis of Electronic component, including Electrical Analysis, NDE (Non-destructive Engineering), PhysicalAnalysis, Chemical Analysis and Sample Preparation (Decap, X-section, etc),

covering Electronic Components, Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002

CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 4 of 8

MEASUREMENT RANGE

Passive component

Type / Part name	Measurable property value	Measuring range
	(1)Voltage endurance (DC)	: AC,DC $0 \sim 5 \text{kV}$
	(2)Insulation resistance	$:5\times10^{5}\Omega\sim10^{14}\Omega$
	(3)leakage current	$1 \times 10^{-3} \sim 10 \text{ A}^{-11}$
	(4)Capacitance	: 18pF ~ 1F*
Fixed capacitor	(5)Dielectric loss tangent(D factor)	: 10* min
	(6)Impedanc	: $1\Omega \sim 10^* M\Omega$
	(7)Temperature properties and	
	gap of the capacitance.	: Temperature range $-40^{\circ}\text{C} \sim +150^{\circ}\text{C}$
	Attention: * The mark varies	according to measurement frequency.
	(1)Resistance value	$:1 \Omega \sim 100 M\Omega$
	(2)Resistance temperature properties and	d
Fixed resistor	gap of the resistance level.	:Temperature range $-55^{\circ}\text{C} \sim +150^{\circ}\text{C}$
rixed resistor	(3)Voltage factor	:±0.02%/V
	(4)Insulation resistance	: $5 \times 10^5 \Omega \sim 2 \times 0^{14} \Omega$
	(5)Voltage endurance	: AC,DC $0 \sim 5$ kV
	(1)Resistance value	: $1 \Omega \sim 100 M\Omega$
	(2)Mutual deviations	: ±3%
	(3)Resistance temperature properties and	d
Variable resistor	gap of the resistance level.	:Temperature range $-40^{\circ}\text{C} \sim +150^{\circ}\text{C}$
*potentiometer	(4)Insulation resistance	: $5 \times 10^5 \Omega \sim 10^{14} \Omega$
	(5)Voltage endurance	: AC,DC $0 \sim 5$ kV
	(6)Rotational noise	:Noise voltage 1mV
	(7)Intensive contact resistance	:1 mΩ
Varistor	Voltage at reference current	:1500V(1mA min)
Thermistor	(1)resistance value	$:1\Omega \sim 1000 k\Omega$
	(2)The thermistor fixed number	:Temperature range $-50^{\circ}\text{C} \sim +300^{\circ}\text{C}$

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002
CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 5 of 8

MEASUREMENT RANGE

Active component part [Individual semiconductor part]

Type / Part name	Measurable property value Measurable property value	easuring range
	(1)Collector-base breakdown voltage	
	(2)Collector-emitter breakdown voltage	:1V ~ 1.5kV
	(3)Emitter base breakdown voltage	:100V min
Transistor	(4)Collector base interception electric curr	rent $:1nA \sim 100mA$
*Bipolar	(5)Collector emitter interception electric c	urrent $:1nA \sim 100mA$
	(6)Emitter base interception electric currer	$nt : 1nA \sim 100mA$
	(7)The collector emitter saturation voltage	:7V min $(I_C < 17A)$
	(8)DC current gain	$:25 \sim 25,000 (I_C < 17A)$
	(1)Gate source breakdown voltage	:1V ~ 1.5kV
Transistor	(2)Gate leak electric current	$:1pA \sim 100mA$
*Field effect form	(3)Drain current	$:1nA \sim 1A$
"Field effect form	(4)The gate cut-off voltage	: ∼ 100V
	(5)The drain source saturation voltage	:7V min (I _D < 17A)
Diode	(1)Forward voltage	:7V min $(I_F < 17A)$
*Small signal	(2)Reverse current	$:1na \sim 100mA (V_R < 100V)$
*I rectify a small electric current	(3)Breakdown voltage	:1V ~ 1.5kV
*Constant voltage	(4)Zener voltage	:100V min
*Small electric current switching	(5)Dynamic resistance	$:50\Omega$ max
	(6)Temperature coefficient	:Temperature range $-55^{\circ}\text{C} \sim +150^{\circ}\text{C}$
Thyristor	(1)Off electric current	$:1 \text{mA} (V_L < 1 \text{kV})$
*3 reverse-blocking terminals	(2)Reverse current	$:1$ na ~ 1 mA ($V_L \le 1$ kV)
*Small electric current	(3)ON-state voltage	$:7V (I_{TM} < 10A)$
	(4)Gate trigger	:1000V min
	(5)Holding current	$:10A(V_{TM} < 7V)$

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002
CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 6 of 8

MEASUREMENT RANGE

Active component part Semicondctor Devices [Integrated circuit]

Type / Part name	Measurable property value Me	easuring range
	(1)The high-level output voltage	:±30V
	(2)The low-level output voltage	:±30V
	(3)The input clamp voltage	:±30V
TTL IC	(4)High-level input electric current	:±300mA
TILIC	(5)Low-level input electric current	:±300mA
	(6)Output short circuit current	:±300mA
	(7)High-level power supply electric current	
	(8)Low-level power supply electric current	
	(1)The high-level output voltage	:±30V
	(2)The low-level output voltage	:±30V
	(3)The high-level input voltage	:±20V
CMOS IC	(4)Low-level input electric current	:±20V
CWOS IC	(5)High-level output electric current	:±300mA
	(6)Low-level output electric current	:±300mA
	(7)Static consumption electric current	:±300mA
	(8)Input current	:±300mA
	(1)Input-offset voltage	$:10\mu V\sim 128mV$
	(2)Input offset current	$:20pA \sim 16\mu A$
	(3)Input bias current	$:20pA \sim 16\mu A$
Analog semiconductor integrated	(4)Open loop voltage gain	$: 0.1 V/mV \sim 1.2 V/\mu V$
circuit *Monolithic op-amp	(5)The max power voltage	$:10 \text{mV} \sim 50 \text{V}$
	(6)Power consumption	$:5 \text{mW} \sim 6.4 \text{W}$
	(7)Common mode rejection ratio	:38 ~ 116dB
	(8)Supply voltage rejection ratio	:38 ~ 116dB
	(9)Aspect input voltage range	$:100 \text{mV} \sim 25 \text{V}$
	(10)Slew rate	$:0.1 \sim 125 V/\mu S$

covering Electronic Components,
Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002
CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 7 of 8

MEASUREMENT RANGE

Mechanical device

Type / Part name	Measurable property value	Measuring range
Connector	(1)Insulationresistanc	$:5\times 10^{5}\Omega \sim 2\times 10^{14}\Omega$
	(2)Withstand voltage	:AC,DC 0 ~ 5kV
	(3)Contact resistance under low voltage,	,
(Electronic equipment use)	the low electric current	$:1m\Omega \sim 100\Omega$
	(4)Chattering of the contact.	:1μsec max
	(1)Withstand voltage	:AC,DC 0 ~ 5kV
	(2)Insulation resistance	$:5\times 10^{5}\Omega \sim 2\times 10^{14}\Omega$
	(3)Direct current resistance of the coil	$:1\Omega \sim 10 k\Omega$
	(4)Contact resistance	$:1m\Omega \sim 100\Omega$
Relay	(5)Operating voltage	:1V max
(Small form for control)	(6)Must-release voltage	:1V max
	(7)Operation time	:1msec max
	(8)Recovery time	:1msec max
	(9)Bounces of the point of contact	:1μsec max
	(10)Chattering of the point of contact	:1µsec max
	(1)Contact resistance	$:1m\Omega \sim 100\Omega$
Switch	(2)Insulation resistance	$:5\times10^{5}\Omega\sim2\times10^{14}\Omega$
	(3)Withstand voltage	: AC,DC $0 \sim 5$ kV
(Electronic equipment use)	(4)Electrostatic capacity	:18pF ~ 1F
	(5)Change of the contact resistance	:1mΩ max
Printed circuit board	(1)Resistance of the plating part of	
	the conductor and through hall p	part. : $1 \text{m}\Omega \sim 1000\Omega$
	(2)Withstand voltage	: AC,DC $0 \sim 5 \text{kV}$
	(3)Insulation resistance	$: 5 \times 10^5 \Omega \sim 10^{14} \Omega$

covering Electronic Components, Assemblies, Related Materials and Processes

For rules and details of the IECQ visit www.iecq.org

Schedule of Scope to Certificate of Approval Independent Testing Laboratory

IECQ Certificate No.: IECQ-L JQAJP 13.0002
CB Certificate No.: JQAQ0002-001-T

Schedule Number: IECQ-L JQAJP 13.0002-S Rev No.: 9 Revision Date: 2021/01/06 Page 8 of 8

MEASUREMENT RANGE

Optical component

Type / Part name	Measurable property value	Measuring range
Luminescent diode (It is for indication.)	(1)Forward voltage	:7V min
	(2)Reverse current	:1mA min
	(3)Luminous intensity(Relative va	lue) :
	1.Integrating sphere	
	(1)Total luminous flux[lm]	:Measurable wavelength range
		$350\text{nm} \sim 1000\text{nm}$
		In sunshine: min 32lm ~
	(2)Color temperature[K]	:
	(3)Chromaticity coordinate	:
	(4)The number of the color ren	dering evaluations :Ra,R1 ~ R14
	2.The light distribution measurement	ent.
LED	(1)Light distribution curve	:Measurable wavelength range
(It is for illumination.)		$360\text{nm} \sim 830\text{nm}$
		:Photometric distance 2m ~ 12m,
	(2)Light intensity(Reference)	:Photometric distance Luminous intensity
		:2.0m: $9 \sim 3,680,000$ [cd]
		:3.0m: $20 \sim 8,200,000$ [cd]
		:6.0m: $83 \sim 33,000,000$ [cd]
		:12m: $330 \sim 132,000,000$ [cd]
	(3)Color temperature	:
	(4)Chromaticity coordinate	:
	(5) The number of the color rendering evaluations: Ra,R1 ~ R14	

